163 research outputs found

    Reannotation of the CELO genome characterizes a set of previously unassigned open reading frames and points to novel modes of host interaction in avian adenoviruses

    Get PDF
    BACKGROUND: The genome of the avian adenovirus Chicken Embryo Lethal Orphan (CELO) has two terminal regions without detectable homology in mammalian adenoviruses that are left without annotation in the initial analysis. Since adenoviruses have been a rich source of new insights into molecular cell biology and practical applications of CELO as gene a delivery vector are being considered, this genome appeared worth revisiting. We conducted a systematic reannotation and in-depth sequence analysis of the CELO genome. RESULTS: We describe a strongly diverged paralogous cluster including ORF-2, ORF-12, ORF-13, and ORF-14 with an ATPase/helicase domain most likely acquired from adeno-associated parvoviruses. None of these ORFs appear to have retained ATPase/helicase function and alternative functions (e.g. modulation of gene expression during the early life-cycle) must be considered in an adenoviral context. Further, we identified a cluster of three putative type-1-transmembrane glycoproteins with IG-like domains (ORF-9, ORF-10, ORF-11) which are good candidates to substitute for the missing immunomodulatory functions of mammalian adenoviruses. ORF-16 (located directly adjacent) displays distant homology to vertebrate mono-ADP-ribosyltransferases. Members of this family are known to be involved in immuno-regulation and similiar functions during CELO life cycle can be considered for this ORF. Finally, we describe a putative triglyceride lipase (merged ORF-18/19) with additional domains, which can be expected to have specific roles during the infection of birds, since they are unique to avian adenoviruses and Marek's disease-like viruses, a group of pathogenic avian herpesviruses. CONCLUSIONS: We could characterize most of the previously unassigned ORFs pointing to functions in host-virus interaction. The results provide new directives for rationally designed experiments

    The ring between ring fingers (RBR) protein family

    Get PDF
    An overview of the large and functionally diverse RBR protein family that mediates protein-protein interactions of various kinds in development and disease

    Darkness in the Human Gene and Protein Function Space:Widely Modest or Absent Illumination by the Life Science Literature and the Trend for Fewer Protein Function Discoveries Since 2000

    Get PDF
    The mentioning of gene names in the body of the scientific literature 1901–2017 and their fractional counting is used as a proxy to assess the level of biological function discovery. A literature score of one has been defined as full publication equivalent (FPE), the amount of literature necessary to achieve one publication solely dedicated to a gene. It has been found that less than 5000 human genes have each at least 100 FPEs in the available literature corpus. This group of elite genes (4817 protein‐coding genes, 119 non‐coding RNAs) attracts the overwhelming majority of the scientific literature about genes. Yet, thousands of proteins have never been mentioned at all, ≈2000 further proteins have not even one FPE of literature and, for ≈4600 additional proteins, the FPE count is below 10. The protein function discovery rate measured as numbers of proteins first mentioned or crossing a threshold of accumulated FPEs in a given year has grown until 2000 but is in decline thereafter. This drop is partially offset by function discoveries for non‐coding RNAs. The full human genome sequencing does not boost the function discovery rate. Since 2000, the fastest growing group in the literature is that with at least 500 FPEs per gene.ASTAR (Agency for Sci., Tech. and Research, S’pore)Published versio

    SPACER: server for predicting allosteric communication and effects of regulation

    Get PDF
    The SPACER server provides an interactive framework for exploring allosteric communication in proteins with different sizes, degrees of oligomerization and function. SPACER uses recently developed theoretical concepts based on the thermodynamic view of allostery. It proposes easily tractable and meaningful measures that allow users to analyze the effect of ligand binding on the intrinsic protein dynamics. The server shows potential allosteric sites and allows users to explore communication between the regulatory and functional sites. It is possible to explore, for instance, potential effector binding sites in a given structure as targets for allosteric drugs. As input, the server only requires a single structure. The server is freely available at http://allostery.bii.a-star.edu.sgpublishedVersio

    pkaPS: prediction of protein kinase A phosphorylation sites with the simplified kinase-substrate binding model

    Get PDF
    BACKGROUND: Protein kinase A (cAMP-dependent kinase, PKA) is a serine/threonine kinase, for which ca. 150 substrate proteins are known. Based on a refinement of the recognition motif using the available experimental data, we wished to apply the simplified substrate protein binding model for accurate prediction of PKA phosphorylation sites, an approach that was previously successful for the prediction of lipid posttranslational modifications and of the PTS1 peroxisomal translocation signal. RESULTS: Approximately 20 sequence positions flanking the phosphorylated residue on both sides have been found to be restricted in their sequence variability (region -18...+23 with the site at position 0). The conserved physical pattern can be rationalized in terms of a qualitative binding model with the catalytic cleft of the protein kinase A. Positions -6...+4 surrounding the phosphorylation site are influenced by direct interaction with the kinase in a varying degree. This sequence stretch is embedded in an intrinsically disordered region composed preferentially of hydrophilic residues with flexible backbone and small side chain. This knowledge has been incorporated into a simplified analytical model of productive binding of substrate proteins with PKA. CONCLUSION: The scoring function of the pkaPS predictor can confidently discriminate PKA phosphorylation sites from serines/threonines with non-permissive sequence environments (sensitivity of ~96% at a specificity of ~94%). The tool "pkaPS" has been applied on the whole human proteome. Among new predicted PKA targets, there are entirely uncharacterized protein groups as well as apparently well-known families such as those of the ribosomal proteins L21e, L22 and L6. AVAILABILITY: The supplementary data as well as the prediction tool as WWW server are available at . REVIEWERS: Erik van Nimwegen (Biozentrum, University of Basel, Switzerland), Sandor Pongor (International Centre for Genetic Engineering and Biotechnology, Trieste, Italy), Igor Zhulin (University of Tennessee, Oak Ridge National Laboratory, USA)

    On the necessity of different statistical treatment for Illumina BeadChip and Affymetrix GeneChip data and its significance for biological interpretation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The original spotted array technology with competitive hybridization of two experimental samples and measuring relative expression levels is increasingly displaced by more accurate platforms that allow determining absolute expression values for a single sample (for example, Affymetrix GeneChip and Illumina BeadChip). Unfortunately, cross-platform comparisons show a disappointingly low concordance between lists of regulated genes between the latter two platforms.</p> <p>Results</p> <p>Whereas expression values determined with a single Affymetrix GeneChip represent single measurements, the expression results obtained with Illumina BeadChip are essentially statistical means from several dozens of identical probes. In the case of multiple technical replicates, the data require, therefore, different stistical treatment depending on the platform. The key is the computation of the squared standard deviation within replicates in the case of the Illumina data as weighted mean of the square of the standard deviations of the individual experiments. With an Illumina spike experiment, we demonstrate dramatically improved significance of spiked genes over all relevant concentration ranges. The re-evaluation of two published Illumina datasets (membrane type-1 matrix metalloproteinase expression in mammary epithelial cells by Golubkov et al. Cancer Research (2006) 66, 10460; spermatogenesis in normal and teratozoospermic men, Platts et al. Human Molecular Genetics (2007) 16, 763) significantly identified more biologically relevant genes as transcriptionally regulated targets and, thus, additional biological pathways involved.</p> <p>Conclusion</p> <p>The results in this work show that it is important to process Illumina BeadChip data in a modified statistical procedure and to compute the standard deviation in experiments with technical replicates from the standard errors of individual BeadChips. This change leads also to an improved concordance with Affymetrix GeneChip results as the spermatogenesis dataset re-evaluation demonstrates.</p> <p>Reviewers</p> <p>This article was reviewed by I. King Jordan, Mark J. Dunning and Shamil Sunyaev.</p

    Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deconjugation of ubiquitin and/or ubiquitin-like modified protein substrates is essential to modulate protein-protein interactions and, thus, signaling processes in cells. Although deubiquitylating (deubiquitinating) enzymes (DUBs) play a key role in this process, however, their function and regulation remain insufficiently understood. The "loss-of-function" phenotype studies can provide important information to elucidate the gene function, and zebrafish is an excellent model for this goal.</p> <p>Results</p> <p>From an <it>in silico </it>genome-wide search, we found more than 90 putative DUBs encoded in the zebrafish genome belonging to six different subclasses. Out of them, 85 from five classical subclasses have been tested with morpholino (MO) knockdown experiments and 57 of them were found to be important in early development of zebrafish. These DUB morphants resulted in a complex and pleiotropic phenotype that, regardless of gene target, always affected the notochord. Based on the <it>huC </it>neuronal marker expression, we grouped them into five sets (groups I to V). Group I DUBs (<it>otud7b, uchl3 </it>and <it>bap1</it>) appear to be involved in the Notch signaling pathway based on the neuronal hyperplasia, while group IV DUBs (<it>otud4, usp5, usp15 </it>and <it>usp25</it>) play a critical role in dorsoventral patterning through the BMP pathway.</p> <p>Conclusion</p> <p>We have identified an exhaustive list of genes in the zebrafish genome belonging to the five established classes of DUBs. Additionally, we performed the corresponding MO knockdown experiments in zebrafish as well as functional studies for a subset of the predicted DUB genes. The screen results in this work will stimulate functional follow-up studies of potential DUB genes using the zebrafish model system.</p

    Not all transmembrane helices are born equal: Towards the extension of the sequence homology concept to membrane proteins

    Get PDF
    <p/> <p>Background</p> <p>Sequence homology considerations widely used to transfer functional annotation to uncharacterized protein sequences require special precautions in the case of non-globular sequence segments including membrane-spanning stretches composed of non-polar residues. Simple, quantitative criteria are desirable for identifying transmembrane helices (TMs) that must be included into or should be excluded from start sequence segments in similarity searches aimed at finding distant homologues.</p> <p>Results</p> <p>We found that there are two types of TMs in membrane-associated proteins. On the one hand, there are so-called simple TMs with elevated hydrophobicity, low sequence complexity and extraordinary enrichment in long aliphatic residues. They merely serve as membrane-anchoring device. In contrast, so-called complex TMs have lower hydrophobicity, higher sequence complexity and some functional residues. These TMs have additional roles besides membrane anchoring such as intra-membrane complex formation, ligand binding or a catalytic role. Simple and complex TMs can occur both in single- and multi-membrane-spanning proteins essentially in any type of topology. Whereas simple TMs have the potential to confuse searches for sequence homologues and to generate unrelated hits with seemingly convincing statistical significance, complex TMs contain essential evolutionary information.</p> <p>Conclusion</p> <p>For extending the homology concept onto membrane proteins, we provide a necessary quantitative criterion to distinguish simple TMs (and a sufficient criterion for complex TMs) in query sequences prior to their usage in homology searches based on assessment of hydrophobicity and sequence complexity of the TM sequence segments.</p> <p>Reviewers</p> <p>This article was reviewed by Shamil Sunyaev, L. Aravind and Arcady Mushegian.</p
    corecore